Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

RAD-seq reveals genetic structure of the F2-generation of natural willow hybrids (Salix L.) and a great potential for interspecific introgression.

Identifieur interne : 000667 ( Main/Exploration ); précédent : 000666; suivant : 000668

RAD-seq reveals genetic structure of the F2-generation of natural willow hybrids (Salix L.) and a great potential for interspecific introgression.

Auteurs : Susanne Gramlich [Allemagne] ; Natascha Dorothea Wagner [Allemagne] ; Elvira Hörandl [Allemagne]

Source :

RBID : pubmed:30509159

Descripteurs français

English descriptors

Abstract

BACKGROUND

Hybridization of species with porous genomes can eventually lead to introgression via repeated backcrossing. The potential for introgression between species is reflected by the extent of segregation distortion in later generation hybrids. Here we studied a population of hybrids between Salix purpurea and S. helvetica that has emerged within the last 30 years on a glacier forefield in the European Alps due to secondary contact of the parental species. We used 5758 biallelic SNPs produced by RAD sequencing with the aim to ascertain the predominance of backcrosses (F

RESULTS

The analyses in STRUCTURE and NewHybrids revealed that the population consisted of parents and F

CONCLUSIONS

The co-occurrence of the parental species and the hybrids on the glacier forefield, the high frequency of backcrossing, and the low resistance to gene flow via backcrossing make a scenario of introgression in this young hybrid population highly likely, potentially leading to the transfer of adaptive traits. We further suggest that this willow hybrid population may serve as a model for the evolutionary processes initiated by recent global warming.


DOI: 10.1186/s12870-018-1552-6
PubMed: 30509159
PubMed Central: PMC6276181


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">RAD-seq reveals genetic structure of the F
<sub>2</sub>
-generation of natural willow hybrids (Salix L.) and a great potential for interspecific introgression.</title>
<author>
<name sortKey="Gramlich, Susanne" sort="Gramlich, Susanne" uniqKey="Gramlich S" first="Susanne" last="Gramlich">Susanne Gramlich</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073, Goettingen, Germany. susanne.gramlich@biologie.uni-goettingen.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073, Goettingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wagner, Natascha Dorothea" sort="Wagner, Natascha Dorothea" uniqKey="Wagner N" first="Natascha Dorothea" last="Wagner">Natascha Dorothea Wagner</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073, Goettingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073, Goettingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Horandl, Elvira" sort="Horandl, Elvira" uniqKey="Horandl E" first="Elvira" last="Hörandl">Elvira Hörandl</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073, Goettingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073, Goettingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30509159</idno>
<idno type="pmid">30509159</idno>
<idno type="doi">10.1186/s12870-018-1552-6</idno>
<idno type="pmc">PMC6276181</idno>
<idno type="wicri:Area/Main/Corpus">000577</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000577</idno>
<idno type="wicri:Area/Main/Curation">000577</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000577</idno>
<idno type="wicri:Area/Main/Exploration">000577</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">RAD-seq reveals genetic structure of the F
<sub>2</sub>
-generation of natural willow hybrids (Salix L.) and a great potential for interspecific introgression.</title>
<author>
<name sortKey="Gramlich, Susanne" sort="Gramlich, Susanne" uniqKey="Gramlich S" first="Susanne" last="Gramlich">Susanne Gramlich</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073, Goettingen, Germany. susanne.gramlich@biologie.uni-goettingen.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073, Goettingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wagner, Natascha Dorothea" sort="Wagner, Natascha Dorothea" uniqKey="Wagner N" first="Natascha Dorothea" last="Wagner">Natascha Dorothea Wagner</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073, Goettingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073, Goettingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Horandl, Elvira" sort="Horandl, Elvira" uniqKey="Horandl E" first="Elvira" last="Hörandl">Elvira Hörandl</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073, Goettingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073, Goettingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Genetic Drift (MeSH)</term>
<term>Genetics, Population (MeSH)</term>
<term>Hybridization, Genetic (genetics)</term>
<term>Polymorphism, Single Nucleotide (genetics)</term>
<term>Salix (genetics)</term>
<term>Sequence Analysis, DNA (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence d'ADN (méthodes)</term>
<term>Dérive génétique (MeSH)</term>
<term>Génétique des populations (MeSH)</term>
<term>Hybridation génétique (génétique)</term>
<term>Polymorphisme de nucléotide simple (génétique)</term>
<term>Salix (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Hybridization, Genetic</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Hybridation génétique</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetic Drift</term>
<term>Genetics, Population</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dérive génétique</term>
<term>Génétique des populations</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Hybridization of species with porous genomes can eventually lead to introgression via repeated backcrossing. The potential for introgression between species is reflected by the extent of segregation distortion in later generation hybrids. Here we studied a population of hybrids between Salix purpurea and S. helvetica that has emerged within the last 30 years on a glacier forefield in the European Alps due to secondary contact of the parental species. We used 5758 biallelic SNPs produced by RAD sequencing with the aim to ascertain the predominance of backcrosses (F</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The analyses in STRUCTURE and NewHybrids revealed that the population consisted of parents and F</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The co-occurrence of the parental species and the hybrids on the glacier forefield, the high frequency of backcrossing, and the low resistance to gene flow via backcrossing make a scenario of introgression in this young hybrid population highly likely, potentially leading to the transfer of adaptive traits. We further suggest that this willow hybrid population may serve as a model for the evolutionary processes initiated by recent global warming.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30509159</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>Dec</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>RAD-seq reveals genetic structure of the F
<sub>2</sub>
-generation of natural willow hybrids (Salix L.) and a great potential for interspecific introgression.</ArticleTitle>
<Pagination>
<MedlinePgn>317</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-018-1552-6</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Hybridization of species with porous genomes can eventually lead to introgression via repeated backcrossing. The potential for introgression between species is reflected by the extent of segregation distortion in later generation hybrids. Here we studied a population of hybrids between Salix purpurea and S. helvetica that has emerged within the last 30 years on a glacier forefield in the European Alps due to secondary contact of the parental species. We used 5758 biallelic SNPs produced by RAD sequencing with the aim to ascertain the predominance of backcrosses (F
<sub>1</sub>
hybrid x parent) or F
<sub>2</sub>
hybrids (F
<sub>1</sub>
hybrid x F
<sub>1</sub>
hybrid) among hybrid offspring. Further, the SNPs were used to study segregation distortion in the second hybrid generation.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The analyses in STRUCTURE and NewHybrids revealed that the population consisted of parents and F
<sub>1</sub>
hybrids, whereas hybrid offspring consisted mainly of backcrosses to either parental species, but also some F
<sub>2</sub>
hybrids. Although there was a clear genetic differentiation between S. purpurea and S. helvetica (F
<sub>ST</sub>
 = 0.24), there was no significant segregation distortion in the backcrosses or the F
<sub>2</sub>
hybrids. Plant height of the backcrosses resembled the respective parental species, whereas F
<sub>2</sub>
hybrids were more similar to the subalpine S. helvetica.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The co-occurrence of the parental species and the hybrids on the glacier forefield, the high frequency of backcrossing, and the low resistance to gene flow via backcrossing make a scenario of introgression in this young hybrid population highly likely, potentially leading to the transfer of adaptive traits. We further suggest that this willow hybrid population may serve as a model for the evolutionary processes initiated by recent global warming.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gramlich</LastName>
<ForeName>Susanne</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-1224-0514</Identifier>
<AffiliationInfo>
<Affiliation>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073, Goettingen, Germany. susanne.gramlich@biologie.uni-goettingen.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wagner</LastName>
<ForeName>Natascha Dorothea</ForeName>
<Initials>ND</Initials>
<AffiliationInfo>
<Affiliation>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073, Goettingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hörandl</LastName>
<ForeName>Elvira</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073, Goettingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>Ho 5462 7-1</GrantID>
<Agency>Deutsche Forschungsgemeinschaft</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>12</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D040961" MajorTopicYN="N">Genetic Drift</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005828" MajorTopicYN="N">Genetics, Population</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006824" MajorTopicYN="N">Hybridization, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Climate change</Keyword>
<Keyword MajorTopicYN="N">Hybrid evolution</Keyword>
<Keyword MajorTopicYN="N">Population genomics</Keyword>
<Keyword MajorTopicYN="N">Population structure</Keyword>
<Keyword MajorTopicYN="N">Sex chromosomes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>06</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>11</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30509159</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-018-1552-6</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-018-1552-6</ArticleId>
<ArticleId IdType="pmc">PMC6276181</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2004 Mar;166(3):1405-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15082559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2011 Mar;11 Suppl 1:117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21429168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2001 Jun;88(6):1011-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11410464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1994 Nov;89(5):551-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24177929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2001 Mar;10(3):537-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11298967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 May;20(5):229-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Mar 23;18(1):251</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28335728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):945-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Nov;171(3):1289-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16079236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Jun 15;28(12):1647-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22543367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18852878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2016 Apr;23(2):115-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27013549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Oct;159(2):883-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11606560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Dec;159(4):1701-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11779808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 1999 May;82 ( Pt 5):561-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10383677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Apr 16;10(4):e0121965</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25880993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2014 May;14(3):597-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24267050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2008 Sep 27;363(1506):3023-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18579476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2013 Jan;3(1):65-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23316439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2012 Mar;108(3):159-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21792222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2000 Apr;84 ( Pt 4):441-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2009 Jan;102(1):4-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18781167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 19;333(6045):1024-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21852500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Jan;169(1):347-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2003 Oct;12(10):2719-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12969475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11823-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18697941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2010 Mar;10(2):378-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21565033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2014 May;4(10):2019-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24963394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Oct;21(20):5042-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22989336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2011 Aug;1(3):171-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22384329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2014 Aug;101(8):1247-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25156978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2016 Jun;116(6):531-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26980342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2011 Oct;107(5):478-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21587301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Jul;14(8):2611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15969739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jul;187(1):230-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20345635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Dec 22;314(5807):1923-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17138866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mitochondrial DNA A DNA Mapp Seq Anal. 2016 May;27(3):2153-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25418623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Jun;22(11):3124-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23701397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2001 Apr;55(4):669-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11392384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Mar;160(3):1217-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11901135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Apr;172(4):2481-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:561-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Jan;42(1):205-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10688138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Sep 17;329(5998):1521-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20847271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2009 Oct;12(10):1040-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19682007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2015 Jun;114(6):575-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25649501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2007 Sep;81(3):559-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17701901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Sep 17;329(5998):1518-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20847270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2016 Oct 05;6(21):7645-7655</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30128118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 27;320(5884):1768-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18583610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2011 Jun 03;12:54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21639918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Feb;22(3):842-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22967258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Mar;18(3):422-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2011 Mar;11 Suppl 1:123-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21429169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2015 Mar 04;15:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25886526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Mar 15;446(7133):279-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17361174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2005 May-Jun;96(3):241-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15618301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2013 Feb;26(2):229-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23323997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Sep;23(17):4316-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24750473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Nov 14;322(5904):1116-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19008450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Apr;19(8):1638-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20345678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2018 Jul 22;8(16):8243-8255</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30250699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Basse-Saxe</li>
</region>
<settlement>
<li>Göttingen</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Basse-Saxe">
<name sortKey="Gramlich, Susanne" sort="Gramlich, Susanne" uniqKey="Gramlich S" first="Susanne" last="Gramlich">Susanne Gramlich</name>
</region>
<name sortKey="Horandl, Elvira" sort="Horandl, Elvira" uniqKey="Horandl E" first="Elvira" last="Hörandl">Elvira Hörandl</name>
<name sortKey="Wagner, Natascha Dorothea" sort="Wagner, Natascha Dorothea" uniqKey="Wagner N" first="Natascha Dorothea" last="Wagner">Natascha Dorothea Wagner</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000667 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000667 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30509159
   |texte=   RAD-seq reveals genetic structure of the F2-generation of natural willow hybrids (Salix L.) and a great potential for interspecific introgression.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30509159" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020